Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.132
Filter
1.
Sci Rep ; 14(1): 10570, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719931

ABSTRACT

The coexistence of sympatric species with similar ecological niches has been a central issue in ecology. Clarifying the daily activity patterns of sympatric wild ungulates can help understand their temporal niche differentiation and the mechanisms of coexistence, providing information for their conservation. The Baotianman National Nature Reserve in northern China is rich in wild ungulates, but little is known about the daily activity patterns of wild ungulates in the area, making it difficult to develop effective conservation strategies. We studied five representative wild ungulates (i.e. forest musk deer, Chinese goral, Reeve's muntjac, Siberian roe deer, and wild boar) of the region using camera-trapping data, focusing on the seasonal daily activity patterns and effects of seasonal grazing of domestic sheep, to reveal their coexistence based on temporal ecological niche differentiation. Comparative analyses of the seasonal daily activity showed that forest musk deer exhibited a single-peak activity in the warm season. Other ungulates exhibited multipeak activity. All five ungulates differed significantly in daily activity patterns. Notably, wild boar and Reeve's muntjac showed high overlap coefficients between the cold and warm seasons. In both cold and warm seasons, the five wild ungulates and domestic sheep displayed low overlap in their daily activity rhythms potentially indicating temporal ecological niche differentiation. The results suggest that temporal isolation might be a strategy for wild ungulates to avoid domestic sheep and reduce interspecific competition, and that temporal ecological niche differentiation potentially promoted the coexistence among the studied sympatric ungulates. This understanding may provide new insights for the development of targeted conservation strategies.


Subject(s)
Animals, Wild , Deer , Ecosystem , Seasons , Sympatry , Animals , Deer/physiology , Animals, Wild/physiology , China , Sheep/physiology
2.
Article in English | MEDLINE | ID: mdl-38729522

ABSTRACT

BACKGROUND AND AIMS: Dysfunction of the intestinal epithelial barrier comprising the junctional complex of tight junctions and adherent junctions leads to increased intestinal permeability, which is a major cause of uncontrolled inflammation related to Inflammatory Bowel Disease (IBD). The NAD+-dependent deacetylase SIRT1 is implicated in inflammation and the pathological process of IBD. We aimed to elucidate the protective role and underlying mechanism of SIRT1 in cell-cell junction and intestinal epithelial integrity. METHODS: The correlation of SIRT1 expression and human IBD was analyzed by GEO or immunohistochemical analyses. BK5.mSIRT1 transgenic mice and WT mice were given dextran sodium sulfate (DSS) and the manifestation of colitis-related phenotypes were analyzed. Intestinal permeability was measured by FITC-Dextran and cytokines expression was analyzed by QPCR. The expression of the cell junction-related proteins in DSS-treated or SIRT1-knockdown Caco2 or HCT116 cells was analyzed by Western blotting. The effects of Nicotinamide mononucleotide (NMN) in DSS-induced mice colitis were investigated. Correlations of the SIRT1-ß-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway with human IBD samples were analyzed. RESULTS: Reduced SIRT1 expression is associated with human IBD specimens. SIRT1 transgenic mice exhibit much-reduced manifestations of DSS-induced colitis. the activation of SIRT1 by NMN bolsters intestinal epithelial barrier function and ameliorates DSS-induced colitis in mice. Mechanistically, DSS down-regulates SiRT1 expression, leading to destabilization of ß-TrCP1 and upregulation of Snail1, accompanied by reduced expression of E-cadherin, Occludin, and Claudin-1, consequently resulting in increased epithelial permeability and inflammation. The deregulated SIRT1-ß-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway correlates with human IBD. CONCLUSION: SIRT1 is pivotal in maintaining the intestinal epithelial barrier integrity via modulation of the ß-TrCP1-Snail1-E-cadhein/Occludin/Claudin-1 pathway.

3.
Front Bioeng Biotechnol ; 12: 1394177, 2024.
Article in English | MEDLINE | ID: mdl-38745845

ABSTRACT

Body sizes and head anatomical characteristics play the major role in the head injuries sustained by vulnerable road users (VRU) in traffic accidents. In this study, in order to study the influence mechanism of body sizes and head anatomical characteristics on head injury, we used age, gender, height, and Body Mass Index (BMI) as characteristic parameters to develop the personalized human body multi-rigid body (MB) models and head finite element (FE) models. Next, using simulation calculations, we developed the VRU head injury dataset based on the personalized models. In the dataset, the dependent variables were the degree of head injury and the brain tissue von Mises value, while the independent variables were height, BMI, age, gender, traffic participation status, and vehicle speed. The statistical results of the dataset show that the von Mises value of VRU brain tissue during collision ranges from 4.4 kPa to 46.9 kPa at speeds between 20 and 60 km/h. The effects of anatomical characteristics on head injury include: the risk of a more serious head injury of VRU rises with age; VRU with higher BMIs has less head injury in collision accidents; height has very erratic and nonlinear impacts on the von Mises values of the VRU's brain tissue; and the severity of head injury is not significantly influenced by VRU's gender. Furthermore, we developed the classification prediction models of head injury degree and the regression prediction models of head injury response parameter by applying eight different data mining algorithms to this dataset. The classification prediction models have the best accuracy of 0.89 and the best R2 value of 0.85 for the regression prediction models.

4.
Nat Commun ; 15(1): 4066, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744885

ABSTRACT

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Subject(s)
Archaea , Genome, Archaeal , Hot Springs , Metagenome , Metagenomics , Phylogeny , Hot Springs/microbiology , Archaea/genetics , Archaea/classification , China , Metagenomics/methods , Biodiversity , Hydrogen-Ion Concentration , Sulfur/metabolism , Temperature , Ecosystem
5.
Small ; : e2401159, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716681

ABSTRACT

Defects can introduce atomic structural modulation and tailor performance of materials. Herein, it demonstrates that semiconductor WO3 with inert electrocatalytic behavior can be activated through defect-induced tensile strains. Structural characterizations reveal that when simply treated in Ar/H2 atmosphere, oxygen vacancies will generate in WO3 and cause defective structures. Stacking faults are found in defects, thus modulating electronic structure and transforming electrocatalytic-inert WO3 into highly active electrocatalysts. Density functional theory (DFT) calculations are performed to calculate *H adsorption energies on various WOx surfaces, revealing the oxygen vacancy composition and strain predicted to optimize the catalytic activity of hydrogen evolution reaction (HER). Such defective tungsten oxides can be integrated into commercial proton exchange membrane (PEM) electrolyser with comparable performance toward Pt-based PEM. This work demonstrates defective metal oxides as promising non-noble metal catalysts for commercial PEM green-hydrogen generation.

6.
J Hematol ; 13(1-2): 12-22, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38644985

ABSTRACT

Background: Polycythemia vera (PV) is a myeloproliferative neoplasm. Ropeginterferon alfa-2b is a new-generation polyethylene glycol-conjugated proline-interferon. It is approved for the treatment of PV at a starting dose of 100 µg (50 µg for patients receiving hydroxyurea (HU)) and dose titrations up to 500 µg by 50 µg increments. The study was aimed at assessing its efficacy and safety at a higher starting dose and simpler intra-patient dose escalation. Methods: Forty-nine patients with PV having HU intolerance from major hospitals in China were treated biweekly with an initial dose of 250 µg, followed by 350 µg and 500 µg thereafter if tolerated. Complete hematological response (CHR) was assessed every 12 weeks based on the European LeukemiaNet criteria. The primary endpoint was the CHR rate at week 24. The secondary endpoints included CHR rates at weeks 12, 36 and 52, changes of JAK2V617F allelic burden, time to first CHR, and safety assessments. Results: The CHR rates were 61.2%, 69.4% and 71.4% at weeks 24, 36, and 52, respectively. Mean allele burden of the driver mutation JAK2V617F declined from 58.5% at baseline to 30.1% at 52 weeks. Both CHR and JAK2V617F allele burden reduction showed consistent increases over the 52 weeks of the treatment. Twenty-nine patients (63.0%) achieved partial molecular response (PMR) and two achieved complete molecular response (CMR). The time to CHR was rapid and median time was 5.6 months according to central lab results. The CHRs were durable and median CHR duration time was not reached at week 52. Mean spleen index reduced from 55.6 cm2 at baseline to 50.2 cm2 at week 52. Adverse events (AEs) were mostly mild or moderate. Most common AEs were reversible alanine aminotransferase and aspartate aminotransferase increases, which were not associated with significant elevations in bilirubin levels or jaundice. There were no grade 4 or 5 AEs. Grade 3 AEs were reversible and manageable. Only one AE led to discontinuation. No incidence of thromboembolic events was observed. Conclusion: The 250-350-500 µg dosing regimen was well tolerated and effectively induced CHR and MR and managed spleen size increase. Our findings demonstrate that ropeginterferon alfa-2b at this dosing regimen can provide an effective management of PV and support using this dosing regimen as a treatment option.

7.
Adv Sci (Weinh) ; : e2306059, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528665

ABSTRACT

Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.

8.
Sci Rep ; 14(1): 6578, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503890

ABSTRACT

The prognostic value of SII (Systemic Immune-Inflammation Index) in HER-2-positive breast cancer (BC) patients, regardless of whether they receive trastuzumab treatment, and its potential value to distinguish patients who may benefit from trastuzumab therapy, warrant further investigation. Clinical data was collected from 797 HER-2-positive BC patients between July 2013 and March 2018. Baseline data differences were adjusted with propensity score matching. Univariate and multivariate analyses explored the correlation between clinical pathological factors, SII, and DFS. Four groups were established. Based on the baseline SII values of the participants, patients who did not receive trastuzumab treatment were divided into Group 1 (Low-SII) and Group 2 (High-SII), where SII had no predictive value for prognosis between groups. Participants who received trastuzumab treatment were also divided into two groups: the Low-SII group (Group 3) and the High-SII group (Group 4). The 5-year DFS was significantly higher in Group 3 than in Group 4 (91.76% vs. 82.76%, P = 0.017). Furthermore, multivariate analysis demonstrated a significant association between high SII and shorter DFS (HR = 3.430, 95% CI = 1.830-6.420, P < 0.001). In HER-2-positive BC patients treated with trastuzumab, those with lower SII showed a longer DFS, suggesting that SII may help in identifying patients who benefit from trastuzumab therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Prognosis , Receptor, ErbB-2 , Inflammation/drug therapy , Retrospective Studies
9.
Mar Drugs ; 22(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535459

ABSTRACT

Seven new phenol derivatives, subversins A-E (1-5), subversic acid A (6) and epi-wortmannine G (7); one new natural product, 4-hydroxy-7-methoxyphthalide (8); and five known compounds (9-13) were isolated from the fungus Aspergillus subversicolor CYH-17 collected from the Haima cold seep. The structures and absolute configurations of these compounds were determined via NMR, MS, optical rotation, electronic circular dichroism (ECD) calculation, X-ray diffraction analysis and comparison with the literature. Compounds 2 and 5 were two pairs of enantiomers. All compounds were tested for their α-glucosidase and acetylcholinesterase (AChE) inhibitory activity, antioxidant activity and antibacterial activity, but no obvious activity was observed among these studied compounds.


Subject(s)
Acetylcholinesterase , Aspergillus , Phenol , Phenols , Fungi
10.
Protein Cell ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437016

ABSTRACT

Tumor-resident microbiota in breast cancer promote cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increases the chemosensitivity of breast cancer by impairing BCSCs.

11.
Clin Exp Med ; 24(1): 49, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427120

ABSTRACT

In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Multiomics , Biomarkers, Tumor , Epithelial-Mesenchymal Transition
12.
Huan Jing Ke Xue ; 45(3): 1328-1336, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471849

ABSTRACT

The contents of eight carbonaceous subfractions were determined by simultaneously collecting PM2.5 samples from four sites in different functional areas of Tianjin in 2021. The results showed that the organic carbon (OC) concentration was 3.7 µg·m-3 to 4.4 µg·m-3, and the elemental carbon (EC) concentration was 1.6 µg·m-3 to 1.7 µg·m-3, with the highest OC concentration in the central urban area. There was no significant difference in EC concentration. The concentration of PM2.5 showed the distribution characteristics of the surrounding city>central city>peripheral area. The OC/EC minimum ratio method was used to estimate the concentrations of secondary organic carbon (SOC) in PM2.5, and the results showed that the secondary pollution was more prominent in the surrounding city, with SOC accounting for 48.8%. The correlation between carbon subcomponents in each functional area showed the characteristics of the peripheral area>central area>surrounding area, all showing the strongest correlation between EC1 and OC2 and EC1 and OC4. By including the carbon component concentration into the positive definite matrix factorization (PMF) model for source apportionment, the results showed that road dust sources(9.7%-23.5%), coal-combustion sources (10.2%-13.3%), diesel vehicle exhaust (12.6%-20.2%)and gasoline vehicle exhaust (18.9%-38.8%)were the main sources of carbon components in PM2.5 in Tianjin. The pollution sources of carbon components were different in different functional areas, with the central city and peripheral areas mainly affected by gasoline vehicle exhaust; the surrounding city was more prominently affected by the secondary pollution and diesel vehicle exhaust.

13.
Cell Death Differ ; 31(4): 447-459, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38413797

ABSTRACT

Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.


Subject(s)
Breast Neoplasms , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic , Histone Deacetylase 2 , Hypoxia-Inducible Factor 1, alpha Subunit , Tumor Suppressor Proteins , X-Box Binding Protein 1 , Humans , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase 2/genetics , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Animals , Cell Line, Tumor , Neoplasm Metastasis , Mice , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Hypoxia/genetics
14.
Curr Protoc ; 4(2): e1002, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406972

ABSTRACT

The widespread application of high-throughput sequencing technology has generated massive sequences of B-cell receptor (BCR) immune repertoires. Computational analysis of these data has gained significant attention due to the increasing importance of immunotherapy and precision medicine. It not only reveals the diversity and dynamic changes in immune responses, contributing to the study of associated diseases, but also provides valuable information for immunodiagnostics and drug development. Recently, we introduced a BCR-specific multiple sequence alignment (MSA) method along with a comprehensive platform software called Abalign, which stands out as an excellent choice for analyzing BCR immune repertoires due to its unique high-throughput processing capability. It offers ultra-fast MSA functionality and a wide range of analytical features, including BCR/antibody extraction, clonal grouping, lineage tree construction, mutation profiling, diversity statistics, VJ gene assignment, antibody humanization, and more. Importantly, users can perform these analyses using the graphical user interface without any programming skills or scripts. In this article, we present a series of protocols that integrate Abalign's analysis modules into a cohesive workflow. This step-by-step workflow provides detailed instructions for software installation, data preparation, and comprehensive analysis of BCR immune repertoires. This workflow facilitates the efficient acquisition of comprehensive results in profiling BCR immune repertoires, offering insights into the impacts of infectious diseases, allergies, autoimmune disorders, tumor immunology, and antibody drugs. Abalign is freely available at http://cao.labshare.cn/abalign/. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Resource preparation Basic Protocol 2: Analyzing BCR immune repertoires Support Protocol 1: Aiding antibody humanization Support Protocol 2: Constructing B-cell lineage trees Alternate Protocol: Running with Linux command line Basic Protocol 3: Comparing BCR immune repertoires.


Subject(s)
B-Lymphocytes , Receptors, Antigen, B-Cell , Receptors, Antigen, B-Cell/genetics , Software , Antibodies , Clone Cells
15.
Head Neck ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38366693

ABSTRACT

PURPOSE: To evaluate the outcomes and toxicities of adding neoadjuvant chemotherapy (NAC) to concurrent chemoradiotherapy (CCRT) in elderly (≥65 years) patients with locoregionally advanced nasopharyngeal carcinoma (LANPC, stage III-IVa). METHODS AND MATERIALS: Using an NPC-specific database, 245 elderly patients with stage III-IVa NPC, receiving CCRT +/- NAC, and an Adult Co-morbidity Evaluation 27 (ACE-27) score <2 were included. Recursive partitioning analysis (RPA) based on TNM stage and Epstein-Barr virus (EBV) DNA were applied for risk stratification. The primary end point was disease-free survival (DFS). RESULTS: Two risk groups were generated by the RPA model. In the high-risk group (EBV DNA < 4000 copy/ml with stage IVa & EBV DNA ≥4000 copy/ml with stage III-IVa), patients treated with NAC plus CCRT achieved improved 5-year DFS rates compared to those who received CCRT alone (56.9% vs. 29.4%; p = 0.003). But we failed to observe the survival benefit of additional NAC in the low-risk group (EBV DNA <4000 copy/ml with stage III). The most common severe acute toxic effects were leucopenia (46.8% vs. 24.4%) and neutropenia (43.7% vs. 20.2%) in the NAC plus CCRT group versus CCRT group with statistically significant differences. CONCLUSIONS: The addition of NAC to CCRT was associated with better DFS for the high-risk group of elderly LANPC patients with ACE-27 score <2. However, the survival benefit of additional NAC was not observed in low-risk patients.

16.
Biomed Pharmacother ; 171: 116203, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38280330

ABSTRACT

Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.


Subject(s)
Neoplasms , Tumor Escape , Humans , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , Neoplasms/drug therapy , Immunotherapy , Tumor Microenvironment
17.
Breast Cancer Res ; 26(1): 9, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212845

ABSTRACT

PURPOSE: This study aimed to evaluate the prognostic role of the baseline neutrophil/lymphocyte ratio (NLR) in HER2-positive metastatic breast cancer (MBC) patients treated with trastuzumab/pertuzumab. EXPERIMENTAL DESIGN: Data from 780 patients from the CLEOPATRA trial and 248 local patients were collected. Patients were divided into the low and high NLR subgroups by the NLR cutoff value. Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) methods were used to control bias. Associations between the NLR and progression-free survival (PFS) and overall survival (OS) were analyzed. RESULTS: The baseline characteristics of the subgroups were well balanced after PSM and IPTW. A low baseline NLR was associated with better PFS and OS in the trastuzumab and docetaxel (TH) group in the unadjusted, PSM and IPTW models. After IPTW, a low NLR, versus a high NLR, was associated with improved PFS (HR 1.35, 95% CI 1.07-1.70, P = 0.012) and OS (HR 1.47, 95% CI 1.12-1.94, P = 0.006) in the TH group. In patients undergoing treatment with trastuzumab and pertuzumab and docetaxel (THP), a low baseline NLR was also correlated with better PFS but not OS across the three models. After IPTW, a low NLR was associated with better PFS (HR 1.52, 95% CI 1.20-1.93, P = 0.001) than a high NLR in the THP group. Multivariate analyses showed that a low baseline NLR was a predictor for PFS and OS in the TH group and for PFS in the THP group in all three models. In the real-world setting, a low baseline NLR was a predictor of better PFS among patients treated with docetaxel plus trastuzumab without or with pertuzumab in the multivariate model (P = 0.015 and 0.008, respectively). CONCLUSIONS: A low baseline NLR is associated with better survival outcomes among HER2-positive MBC patients receiving docetaxel plus trastuzumab/pertuzumab as first-line therapy.


Subject(s)
Breast Neoplasms , Female , Humans , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , Docetaxel , Lymphocytes/pathology , Neutrophils/pathology , Prognosis , Receptor, ErbB-2 , Trastuzumab/therapeutic use
18.
Eur Radiol ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224375

ABSTRACT

OBJECTIVES: As a novel imaging marker, pericoronary fat attenuation index (FAI) reflects the local coronary inflammation which is one of the major mechanisms for in-stent restenosis (ISR). We aimed to validate the ability of pericoronary FAI to predict ISR in patients undergoing percutaneous coronary intervention (PCI). MATERIALS AND METHODS: Patients who underwent coronary CT angiography (CCTA) before PCI within 1 week between January 2017 and December 2019 at our hospital and had follow-up invasive coronary angiography (ICA) or CCTA were enrolled. Pericoronary FAI was measured at the site where stents would be placed. ISR was defined as ≥ 50% diameter stenosis at follow-up ICA or CCTA in the in-stent area. Multivariable analysis using mixed effects logistic regression models was performed to test the association between pericoronary FAI and ISR at lesion level. RESULTS: A total of 126 patients with 180 target lesions were included in the study. During 22.5 months of mean interval time from index PCI to follow-up ICA or CCTA, ISR occurred in 40 (22.2%, 40/180) stents. Pericoronary FAI was associated with a higher risk of ISR (adjusted OR = 1.12, p = 0.028). The optimum cutoff was - 69.6 HU. Integrating the dichotomous pericoronary FAI into current state of the art prediction model for ISR improved the prediction ability of the model significantly (△area under the curve = + 0.064; p = 0.001). CONCLUSION: Pericoronary FAI around lesions with subsequent stent placement is independently associated with ISR and could improve the ability of current prediction model for ISR. CLINICAL RELEVANCE STATEMENT: Pericoronary fat attenuation index can be used to identify the lesions with high risk for in-stent restenosis. These lesions may benefit from extra anti-inflammation treatment to avoid in-stent restenosis. KEY POINTS: • Pericoronary fat attenuation index reflects the local coronary inflammation. • Pericoronary fat attenuation index around lesions with subsequent stents placement can predict in-stent restenosis. • Pericoronary fat attenuation index can be used as a marker for future in-stent restenosis.

19.
Chem Commun (Camb) ; 60(11): 1420-1423, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38204408

ABSTRACT

Here we develop a near infrared (NIR) fluorogenic probe for carbon monoxide (CO) detection and imaging based on palladium-mediated carbonylation using a NIR boron-dipyrromethene difluoride as a fluorophore and tetraethylene glycols as aqueous moieties. The probe is utilized to image exogenous and endogenous CO under different stimulated conditions in live cells.


Subject(s)
Boron Compounds , Carbon Monoxide , Palladium , Fluorescent Dyes , Spectroscopy, Near-Infrared
20.
Biol Chem ; 405(3): 167-176, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-37768929

ABSTRACT

Patients with acute myocardial infarction complicated with diabetes are more likely to develop myocardial ischemia/reperfusion (I/R) injury (MI/RI) during reperfusion therapy. Both HMGB1 and RAGE play important roles in MI/RI. However, the specific mechanisms of HMGB1 associated with RAGE are not fully clarified in diabetic MI/RI. This study aimed to investigate whether the HMGB1-RAGE axis induces diabetic MI/RI via regulating autophagy and apoptosis. A db/db mouse model of MI/RI was established, where anti-HMGB1 antibody and RAGE inhibitor (FPS-ZM1) were respectively injected after 10 min of reperfusion. The results showed that treatment with anti-HMGB1 significantly reduced the infarct size, serum LDH, and CK-MB level. Similar situations also occurred in mice administrated with FPS-ZM1, though the HMGB1 level was unchanged. Then, we found that treatment with anti-HMGB1 or FPS-ZM1 performed the same effects in suppressing the autophagy and apoptosis, as reflected by the results of lower LAMP2 and LC3B levels, increased Bcl-2 level, reduced BAX and caspase-3 levels. Moreover, the Pink1/Parkin levels were also inhibited at the same time. Collectively, this study indicates that the HMGB1-RAGE axis aggravated diabetic MI/RI via apoptosis and Pink1/Parkin mediated autophagy pathways, and inhibition of HMGB1 or RAGE contributes to alleviating those adverse situations.


Subject(s)
Benzamides , Diabetes Mellitus, Experimental , HMGB1 Protein , Myocardial Reperfusion Injury , Animals , Mice , Apoptosis , Autophagy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , HMGB1 Protein/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...